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Rapid matching algorithm for hyperspectral image based on
norm sifting
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We propose a rapid spectral matching method by lowering number of comparisons, processing time can be
saved. Firstly, 1-norm is chosen as length measure of spectrum, and with this criterion, a 1-norm database
is built. Secondly, a subspace is constructed from the whole reference library by retaining the references
with the most similar 1-norm values. Finally, matching operations are performed in the subspace to obtain
the match result. Simulations of geological mapping with ASTER spectral library show that the proposed
method can significantly reduce processing time and enhance accuracy compared with traditional and
dimension reduction methods.
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Hyperspectral images provide both spatial and spectral
information with fine resolution. Analysis of hyperspec-
tral data has been applied to environment monitoring, ge-
ological mapping, target recognition, etc.[1−3]. Lately the
study of hyperspectral image processing has been mainly
focused on anomaly detection, mixture analysis and clas-
sification methods according to specific applications[4].
On the other hand, as a pre-processing step of these
methods, techniques of band selection, feature extrac-
tion, and dimension reduction are also topics of inter-
est. They deal with the problem of high dimensionality
of hyperspectral data[5], which is of great importance in
applications like military target detection where the pro-
cessing speed really matters[6]. Spectral matching pro-
grams also benefit from these methods, compared to tra-
ditional spectral matching measures like Euclidean dis-
tance (ED) and spectral angle measure (SAM)[7,8], after
dimensional reduction, redundant spectral information is
removed, therefore the calculation complexity is reduced.

In recent years, numerous dimension reduction meth-
ods have been proposed[9−12] to avoid redundancy be-
tween bands. For spectral matching tasks, a feasible di-
mension reduction method is band selection[13−17]. Guo
et al. proposed a band selection method based on mu-
tual information (MI)[16]. The method estimates MI val-
ues using priori knowledge of a reference dataset, and by
eliminating bands with low MI values, which result in the
reduction of the computational cost of spectral matching.
Another method, proposed by Li et al. is called adaptive
band selection algorithm (ABS)[17], which retains bands
with the largest possible amount of information and the
least correlation among them. Similarly, the method is
capable of reducing the computational cost of matching
algorithms.

These methods are designed to reduce the dimensions
of every single spectrum by eliminating redundant bands,
in this way the calculation time required for each compar-
ison between spectra will be reduced. However, a great
number of comparisons are still needed during spectral

matching procedure, which is especially true when the
spectral library contains a large quantity of reference
spectra. Therefore the total processing time for spec-
tral matching is still problematic for certain applications.
Band selection methods overlooked this factor, so it is
necessary to develop a method to reduce matching time
by avoiding unwanted comparisons.

In this letter, a new spectral matching algorithm based
on norm information of spectrum is proposed, by lower-
ing the number of comparisons, processing time can be
saved. Reference spectra in spectral library are viewed
as n-dimensional vectors, which are sparsely distributed
in an n-dimensional space. The 1-norm values of these
vectors are calculated and used as an index for sifting.
When a pixel is analyzed, reference spectra with similar
1-norm values are retained and subsequently compared
with the pixel. In this method, spectral matching is pro-
cessed inside a significantly smaller subspace rather than
in the entire n-dimensional space. As fewer comparisons
are needed, time consumption is considerably decreased.

In geographical mapping applications, spectral match-
ing algorithm performs a pixel-by-pixel analysis for an
image containing N pixels with n bands. Each pixel is
compared with M reference spectrums in the library to
determine the most similar material. The time needed
for these operations can be expressed as follows:

T1 = M × (Td + Tc)×N, (1)

where Td refers to the reading and writing time of a ref-
erence spectrum record and Tc stands for time spent on
comparison operations.

A spectrum with n bands can be viewed as a vector
xn = {x1, x2, · · · , xn} in n-dimensional space. The dis-
tance between target spectrum xn and a reference spec-
trum yn can be calculated using spectral similarity mea-
sures. Two of the most popular similarity measures are
ED and SAM[7]. They are expressed as
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Time complexity of comparison operation has been
proven to be O(n2) by Eqs. (2) and (3). Dimension
reduction algorithms reduce O(n2) to O(l2) by compress-
ing the original n-dimensional space into a smaller one-
dimensional space. A comparison operation will be per-
formed M × N times in Eq. (1) to facilitate the reduction
of Tc by the same number of times.

On the other hand, the decrease of Tc with the help of
faster CPUs on PCs has also been demonstrated. A PC
equipped with a Core2 Duo CPU has obtained a low Tc

of 0.1 ms when measuring the ED of two 210-dimension
vectors. In this context, time spent on searching, read-
ing, and writing references (Td) cannot be ignored. The
same PC has achieved the reading/writing time of a vec-
tor as Td ≈ 0.5 ms. Td has taken about 80% of the total
time consumed in (Td + Tc). Thus, methods that focus
on reducing Tc (e.g. dimension reduction) will no longer
be effective in reducing total time cost.

Results from utilizing Eq. (1) show that the pixel num-
ber N remain unchanged for a certain task, Td can be
bound by hardware limitations and cannot be lowered,
and Tc can only have a minimal effect on time reduction,
as previously mentioned. Therefore, the remaining pos-
sible choice to increase spectral matching efficiency is to
lower the number of reference library M . In other words,
the number of comparisons should be reduced, and un-
necessary comparisons need to be avoided.

A spectral library Y = {y1,y2, · · · ,yM} is a set of
M n-dimensional vectors distributed in n-dimensional
space. Each element in the set stands for a certain kind
of material. Suppose a pixel on a hyperspectral image
is occupied by material yi; then data on this pixel col-
lected by a hyperspectral sensor are affected by atmo-
sphere attenuation and instrumental noise. Thus, after
atmosphere correction and de-noising, target spectrum
y′i is obtained. y′i is slightly different from yi because
attenuations and noises are not eradicated. The task of
spectral matching is to determine the reference yt in set
Y that has the least distance from y′i. When using ED
or SAM measures, the match result yt is given as

yt

∣∣∣EDt = min
i

EDi or SAMt = min
i

SAMi,

i ∈ (1, 2, · · · ,M). (4)

For a finite set Y , all M elements are contained in
an n-dimensional sphere with a radius of R, expressed
as O(Rn). Elements are uniformly and sparsely dis-
tributed. However, as shown in Fig. 1, target spec-
trum y′i deviates slightly from its original reference yi.
Thus, it is inefficient to search for yt within the entire
O(Rn). To address this concern, an improved search
strategy is proposed. Instead of searching within O(Rn),
the search is conducted within a smaller n-dimensional

Fig. 1. (Color online) Distribution of references in an n-
dimension space. Colored lines stand for references in the
library. The dark region is the subspace centered at y′i. With
suitable radius r, the correct match result should be contained
in the subspace.

sphere O(rn) centered at point y′i with a radius of r, as
shown in Fig. 1. Let Yrn be the set of references in O(rn),
then, we can determine a suitable r which satisfies:

Yrn ∈ Y and yi ∈ Yrn , 0 < r 6 R. (5)

Therefore, Yrn is a subspace of Y . Yrn eliminates irrel-
evant elements in Y and thus, its size m might be smaller
than that of M . In this case, spectral matching is per-
formed within Yrn rather than in Y . Consequently, yt
in Eq. (4) is obtained simply by m comparisons, which
results in significant reduction of the processing time.

Subsequent to the analysis of the proposed search strat-
egy is the development of a feasible method to construct
subspace Yrn . The p-norms can be used as length mea-
sures in an n-dimensional space. The simplest form of
p-norms is 1-norm, which is expressed as

∣∣∣
∣∣∣xi

∣∣∣
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1

=
n∑

i=1

xi. (6)

Target spectrum y′i and its match yi should have sim-
ilar lengths, thus their 1-norms should also be similar.
Therefore, only references with 1-norm near ||y′i||1 should
be retained for comparison. Based on 1-norm informa-
tion, the original reference library can be sifted through
to obtain subspace Yrn , which consists of all references in
O(rn). Using 1-norm criterion, O(rn) can be expressed
as

O(rn) =
{
yi
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}

. (7)

With the norm sifting method, time consumption for
spectral matching is given as

T2 = [Ts + m× (Td + Tc)]×N. (8)

The number of perform times of Td and Tc dropped
from M in Eq. (1) to m in Eq. (8). For each pixel,
additional time Ts is used to calculate ||⇀y′i||1 and to con-
struct Yrn . As expressed in Eq. (6), the time complexity
of calculating ||⇀y′i||1 is O(n). The time complexity of
constructing Yrn is mainly determined by searching ac-
tions, the time complexity of which is O(log2M). The
time complexity of Ts should be O(n) + O(log2M) =
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O(n). Comparing this complexity with those of Eqs. (2)
and (3), it can be concluded that Ts << Td << Tc. Com-
paring Eqs. (8) with (1), the ratio of time cost with and
without norm-based sifting is given as

T1

T2
=

M × (Td + Tc)×N

[Ts + m× (Td + Tc)]×N

=
M × (Td + Tc)

Ts + m× (Td + Tc)
≈ M

m
. (9)

Therefore, the matching algorithm is M/m times faster
when a sifting method is used. This ratio can be esti-
mated using the relationship between the sizes of sub-
space O(rn) and space O(Rn). Suppose 1-norm values of
all references are uniformly distributed, then the radius
R of O(Rn) should be M/2. When this is combined with
Eq. (7), M/m can be expressed as

M

m
=

2R

2r
=

R

r
. (10)

The spectral matching algorithm using norm sifting
method is illustrated in detail by the following steps:

1) For each reference spectrum in library Y , 1-norm is
calculated using Eq. (6). The results are subsequently
rearranged to obtain a sorted 1-norm database, denoted
as {||yi||1}.

2) For spectrum xi,j received on pixel (i, j), the 1-
norm ||xi,j ||1 is calculated using Eq. (6). The nearest
1-norm value ||yo||1 of ||xi,j ||1 is determined from 1-norm
database {||yi||1}.

3) The subset Yrn = {yo−r, · · · , yo−1, yo, yo+1, · · · ,
yo+r} is constructed. The subset consists of 2r + 1
spectrums, including yo, r spectrums above yo, and r
spectrums below yo in {||yi||1}.

4) The Euclidean distances EDxyi
, i=o− r, · · ·, o, · · ·,

o + r are calculated between xi,j and every reference
in Yrn . The shortest distance yt|EDxyt = min

i
EDxyi is

determined, and consequently, yt is the match result of
xi,j .

Simulations were performed on a PC with a Core 2
Duo CPU to assess the proposed norm sifting (NS) spec-
tral matching algorithm. A total of 1 430 records from
an ASTER spectral library were chosen as a reference
library. Each record contained 215 bands ranging from 2
to 14 µm. A map of N=145×145 (pixels) was established,
and the material of each pixel was randomly chosen from
the reference map.

The NS algorithm (subspace radius set to r = M×5%)
was compared with three spectral matching algorithms,
namely, the ED method, MI method[16] with retained
bands of 20, and the ABS method[17] with retained bands
of 20. To evaluate the performance of these methods un-
der different kinds of reference libraries, library size M
was set to 50, 100, 200, 400, 600, 800, 1 000, 1 200, and
1 430. Processing times of these algorithms are shown in
Fig. 2.

Figure 2 shows that the time consumption of the
four algorithms increases in a linear manner in rela-
tion to library size. The traditional ED method achieves
the largest time cost under any circumstance. MI and
ABS have the same level of performance, both achieving

Fig. 2. Time cost of the proposed NS method compared with
the ED, MI, and ABS methods. Simulations were performed
under different library sizes, M= 50, 100, 200, 400, 600, 800,
1 000, 1 200, and 1 430.

Table 1. Comparison of Accuracies between
Proposed NS Method and MI, ABS, and ED

Methods

Library Size NS (%) MI (%) ABS (%) ED (%)

50 92.17 96.09 93.87 98.06

100 89.45 96.57 92.36 99.04

200 91.27 97.84 95.44 99.53

400 94.04 97.68 93.67 99.00

600 95.87 94.36 94.23 99.11

800 96.46 92.80 94.41 98.12

1 000 94.41 88.93 90.42 96.66

1 200 94.71 90.63 91.14 97.18

1 430 93.14 90.05 89.25 96.31

processing time 15% less than that of the ED method.
The proposed NS algorithm reduces time consumption
significantly, especially when library size is larger. At
M=1430, the NS method completes a matching task in
1 670 s, taking only 9.9% of the processing time of ED.

The accuracy of a matching algorithm is defined by
Nmatch/N , where Nmatch counts the number of correct
matches of N pixels. Comparison of accuracies is il-
lustrated in Table 1. Of the four methods, ED has the
highest accuracy because it keeps raw hyperspectral data
on every spectrum and shows the upper boundary for all
spectral matching algorithms. Other methods show sim-
ilar results, with accuracies slightly lower than that of
the ED method. The NS method performs slightly bet-
ter than both the MI and ABS algorithms when library
size is 600 or more and remains competitive even when
library size is smaller.

The radius r affects the performance of NS the method
in two ways. First, as shown in Eq. (10), r determines
how fast the proposed algorithm runs, wherein a smaller r
means less processing time. Second, r is related to match
accuracy, and with a smaller r, the correct reference will
be more likely to “slip away” from O(rn), causing the
accuracy to decrease. The proposed algorithm was tested
at M =1430 with different radii r=30–90.

Figure 3 shows the time analysis of the results. The
growth of r results in the linear growth of total time cost.
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Fig. 3. (Color online) Time analysis of the proposed method.
Time spent on sifting operations (red line), reading/writing
operations (blue line), and comparing/matching calculations
(purple line), together with total time consumptions (black
line) with different radii are shown.

Fig. 4. (Color online) Time cost and accuracy under different
radii. Using N-P criterion with a lower limit of acceptable
accuracy set to 93%, the optimal radius is found at r=72.

Time spent on comparing/matching and reading/writing
also increases linearly, although the latter grows much
faster than the former. Processing time for sifting is less
than 1 s, which is negligible compared with those of other
operations.

Figure 4 shows the relationship between radius and ac-
curacy (blue curve) and between radius and time con-
sumption (red line). With a larger r, better accuracy is
obtained, but the growth rate of accuracy shows a ten-
dency to slow down, gradually approaching the limit ac-
curacy of the ED method shown in Table 1.

N-P criterion[18] can be used to achieve a compromise
between efficiency and accuracy of the proposed algo-
rithm. First, a lower limit of acceptable accuracy is
defined. Subsequently, the smallest r, which satisfies
the requirement of accuracy, is chosen as the optimal ra-
dius. For instance, if the required accuracy should be
above 93% for certain tasks, the optimal radius should
be r=72, as shown in Fig. 4.

In conclusion, a matching algorithm for hyperspectral
image analysis based on norm sifting has been described.

With the construction of a subspace based on 1-norm
criterion, the number of comparison operations is mini-
mized. Simulation results show that the proposed algo-
rithm saves approximately 90% of processing time com-
pared with the ED algorithm. Moreover, its accuracy
is competitive compared with those of the ED, MI, and
ABS algorithms. The proposed method is useful for ge-
ological mapping, as well as other applications using the
spectral matching method.
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Research Fund for the Doctoral Program of Higher Ed-
ucation of China (No. 20100142120012).
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